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Labelling schemes for tetrahedron equations and dualities
between them

Jarmo Hietarintaj}
LPTHE¥*, Tour 16, 1%T étage, 4, place Jussien, F-75252 Paris Cedex 5, France

Recetved | March [994, in final form 6 July 1954

Abstract. Zamolodchikov's tetrahedron equations, which were derived by considering the
scattering of straight strings, can be written in three different labelling schemes: one can use
as labels the states of the vacua between the strings, the states of the string segments, or the
states of the particles at the intersections of the strings. We give a detailed derivation of the
thrée corresponding tetrahedron equations and also show how the Frenkel-Maore equations fits
in as a non-local string labelling. We then discuss how an analogue of the Wu-Kadanoff duality
can be defined between each pair of the above three labelling schemes. It turns out that there
are two cases, for which one can simultanecusly construct a duality between alf three pairs of
labeilings.

1. Introduction

Now that a quite good understanding of (1+1)-dimensional integrable systems (both classical
and quantum, continuum and discrete) has been obtained, attention has turned to higher
dimensions where serious difficulties have been encountered. The varicus approaches that
were successful in 1 4+ 1 dimensions have different natural extensions to 2+ 1 dimensions
and it is not clear which method is best. It is therefore important to push each one and
hopefully they wili illuminate different aspects of 2 4+ 1 integrable systems.

In this paper we consider the extension of the Yang-Baxter equations to 2+1 dimenstons.
The fundamental work in this problem was done at the beginning of the 1980s, first
by Zamolodchikov [1], who derived the relevant tetrahedron equations by studying the
scattering of straight strings. In this formulation it was natural to use the quantum numbers
of the string segments {faces in the lattice formulation) as labels. Subsequently Bazhanov
and Stroganov [2] wrote down the equations corresponding to cell and edge labelling. A
different type of edge tetrahedron equation has been proposed by Frenkel and Moore [3].

Higher-dimensional generalizations of the tetrahedron equations have also been
discussed in the literature. The 4-simplex equations already appeared in the above paper of
Bazhanov and Stroganov [2] and d-simplex equations have been discussed, for example, by
Maillet and Nijhoff [4] and Carter and Saito [5]. For related geometric constructions, see
[61.

In all formulations the number of equations is huge even for the simplest two-state
model, and subsequent progress has been slow because it has been exceedingly difficult to
find solutions (especially those with spectral parameters) to these equations. The original
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solution proposed by Zamolodchikov [1] was studied in detail by Baxter {7], and only quite
recently some further solutions have been found [10, 13].

Much of the work on tetrahedron equations has been done in the framework of solvable
lattice models. Each formulation has its own natural properties and from time to time it is
useful to look at all of them for inspiration. With this in mind we return to the original
formulation of straight string scattering, and from this point of view look in detail at the
properties of the various methods of labelling the tetrahedron equations.

Our main objective is to study the analogues of Wu-Kadanoff duality in the tetrahedron
situation. The duality between the vertex and face formulations of the Yang-Baxter
equations imposes certain restrictions for the existence of non-zero elements of the R-
matrix. These restrictions amount to the very important 8-vertex ansatz, and our hope is
that also in the tetrahedron case duality will lead us to fruitful ansétze.

The organization of this paper is as follows: in the next section we start by rederiving
the Yang-Baxter equations in detail, because we want to use the analogies in the tetrahedron
case. We also discuss in similar detail the weill known Wu-Kadanoff duality that connects
the two formulations of the Yang-Baxter equations under certain circumstances. In section 4
we then derive three versions of the tetrahedron equations. They differ by the choice of
labels, we can use as labels the state of the vacuum between the strings, the state of the
string segments, or the state of the particles at the intersection of the strings. The Frenkel-
Moore equation will also be obtained if we use non-local string labelling. In section 5
we will derive a duality between each pair of tetrahedron equations, in analogue to the
Wu-Kadanoff duality. This implies certain resirictions (which are explicitly writien out) on
the functions. When these restrictions hold both equations reduce to a common equation
that has fewer labeis and summation indices. Finally we consider the possibility of one
equation being dual to the two others.

Our main result is the indentification of two cases, for which there can simultanecusly
exist a duality between each pair of labelling schemes.

2. The Yang-Baxter equations

In this section we review the particle_scattering derivation of the Yang-Baxter equations.
This is done in some detail, because apaloguous steps wili be followed in the derivation of
the tetrahedron equations.

2.1. The basic state and the basic scattering process

The Yang-Baxter equation can be interpreted as describing scattering, with a factorizable
scattering matrix, in 1 <+ 1 dimensions {10]. The ambient space is one-dimensional and the
fundamental state is a point particle moving with a constant speed, see figure 1. The particle
divides the space into two parts and the state of the vacoum can be different in them (in
this case the moving particle can be modelled by a kink that interpolates between the two
vacua). In the general case we must therefore use three labels (in addition to a dynamical
characterization by velocity) to completely describe the basic state.

The basic scattering process is obtained if we have two particles moving with different
velocities. Initially the particles approach each other, scatter, and finally recede from each
other, see figure 2. During scattering the momenta do not change, but the internal states
of the particles can change, as well as the vacuum between them. Thus, in principle, the
scattering amplitude could at the same time depend on four vacuum labels and four particle
labels, in addition to the relative momenta (or the angle between the intersecting trajectories).
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Figure 1. The basic state and its labelling, Figure 2, The basic process: Particles { and j collide

resulting in particles & and {. The collision is elastic in
the sense that the momenta do not change and inelastic
in that the colliding particles and the vacuum between
them can change.

Usually one uses only vacuum or particle labelling. Vacweum (or ‘face’) labelling is used
e.g. in the ‘interaction round a face’ (IRF} formulation of lattice models [11], where the
scattering amplitude of figure 2 is given by the ‘Boltzmann weight’ w(b, c, d, a; u); here the
first label is for the vacuum between the incoming particles and thereafter counterclockwise.
In particle labelling (or vertex formulation of lattice models) one uses the R-matrix and the
amplitude of the above process is RY/.

2.2. Condition from factorizability

The above describes fully what can happen with two particles. The situation becomes
more interesting when we have three particles. Since the two-body scatterings are elastic
{(momenta do not change), the approaching particles will undergo precisely three of these
pairwige scatterings before they fly out again (figure 3}, The order in which they take piace
depends on the relative initial location of the particles, and the natural assumption is that for
the three particle scattering amplitude the order should not make any difference. Pictorially
this is stated in figure 4 [10].

The equations following from figure 4 depend on which labelling scheme we are using.
If we use vacuum (face) labelling, where the scattering amplitude of figure 2 is given by
w(b.c, d, a; u) the condition of figure 4 gives [11]

Do wb,c.g, @ wwlc.d, e, giu+ v)w(g, e f.a;v)
&
=Y w(c.d. g b v)wb, g o u+ v)wig,d,e, fiu). 0
£

There is just one summation index, the vacuum inside the triangle, which appears in all

scattering amplitudes.
If we use particle (vertex)} labelling and the scattering amplitude for the scattering process

figure 2 is given by R,‘f‘; (1) then the condition of figure 4 gives

Rt @) RUZ e+ 0REE () = REDWIRIE (e + ) REE (W) )
In this case there are three pairwise summation indices (k;) so we have used Einstein’s
summation convention. Because of this we can consider R as a matrix operating on the
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Figure 3, The two possible three particle scattering scenarios with the same momenta but
different initial position of particle 2.

Figure 4. Pictorial representation of the factorization condition.

tensor product of two vector spaces, while the equation itself is defined on the tensor product
of three vector spaces. Thus we can use the shorthand notation

RizR13Ry = RnRiaRy 3)

where we have only written out the names of the vector spaces on which R operates non-
trivially. The matrix interpretation has many important group-theoretical consequences, for
example, it is easy to see that (2} is invariant under ‘gauge’ transformations

Raﬁ —+ (Qx ® Q,B)Ra,s(Qa ® Q,B)“] C))

where the Qs are non-singular ordinary matrices.
Both of the above Yang—Baxter equations (YBE) follow then from factorizability, they

just differ in their labelling. And even this difference is sometimes just formal, as we will
discuss next.

3. The Wu-Kadanoff duality

The vacuum (face) labelling and particle (vertex) labelling are not completely isolated; under
certain restrictions (which turn out to be of practical significance) one can establish a well
known duality between them [12]. Here the derivation is again done in detail because the
analogies will be used later with the tetrahedron equations.
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3.1. Generalities

Previously, the nature of the labels was left open, because no structure was necessary.
However, now we have to do some algebra with the indices and thus we have to discuss
the domain we will be working in.

Let us first recall the setting of the original lattice work. The face (vacuum) and edge
(particle) labels were given by the state of a spin, either up or down. For models with
more than two states the values of the state labels could be modelled by integers modulo
d, or for more exotic models by pairs of integers modulo 4. etc. In general we assume that
the labels are elements of some Abelian group I. For spins one often uses multiplicative
notation for this group, but in this paper we use additive notation.

In the following we have to do some simpie arithmetic with the labels. In general,
the vacoum and particle labels could be from a different Abelian group, but to simplify
notation we take them to be the same, /. We will need a lingar map from [ to [ with
some parameters, we assume that the parameters belong to ring R so that / will be an
R-module. In fact we will assume that the parameters belong to some (finite) field F. The
most common example is that F = integers modulo a prime number p, and [ = F*,

Thus the vacuum labels of the Boltzmann weight w belong to [, and w itself defines
amap w: /& — C. Similarly the particle labels of the scattering amplitude belong to 7,
and R: I®* — C.

In order to define a duality relation between two labelling schemes we use the following
basic principles.

(i) Hierarchy: the scattering amplitude of a labelling scheme with fewer summation
indices in the factorization condition is expressed in terms of those whose equation has
maore summation indices.

(i1) Locality: the state of a particle is given by its nearest neighbour vacuum states.

(iii) Linearity: the above dependence is linear.

3.2, Details

The above principles imply that the duality between w and R is given by w = Ro f, or
explicitly (cf figure 4)

— péaudttac,caattad
W(b, c, d, a) - Rg,u-f-nb.ezb-l-tzc (5)

with eight constants ¢;, 7;, that are free at the moment (in the simplest case we expect
these constants to be =1}. This defines the local maps f; : I®* — I, for example
i = fila. &) = €ja + 1;b, and the function f : I8 — If"' mentioned above is their
extension to the domain of w, as given in (5). We must in fact extend f to the full space in
question, defining £* : 137 — I®°, and verify that with this mapping the two equations (1)
and (2) reduce to a common equation. To do the above we proceed in four steps:

(1) Labe!l matching. In equation (5) there are four different pairs of ¢ and t coefficients,
but they cannot all be free, because in (2) the &, indices, for example, appear in different
places in R and they must of course have the same expression. For example, from the two
ks on the LHS we conclude that €3 = ¢; and 73 = 17. The final result is that the dependence
on the subscript is trivial, ; = €, T, = 1, Vi, i.e. functions f; are all alike. The extensions
to f and f* follow then straightforwardly.

(i1) Constraints on R and w. In (2) there are three summation indices, in (1) only one;
the range of the map f* cannot, therefore, be the fuil IF?Q. We can reduce the number
of summation indices only by introducing constraints of the type ‘R = O for some index
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values’, which means that we must look at the range of f and define R = 0 outside. The
label restriction on R must in general have the form

Ril=0 unless  Ai + Bj + Ck+ DI =0

where the constants A, B, C, D are determined by f, i.e. the form of R used in (5). The
labels a, b, ¢, d are here free and we need a non-trivial solution of

Aléa + b))+ Bleb+ 1)+ Cled +te)+ Dlea+ 1d) =0

on the whole /®*. This is easily found, we get A = —D = ¢, B = —C = —1, hence the
restriction must be
R,{‘J’ =0 unless eith=¢el+7j. 6)

Since we can determine the upper right label, say, of R from the others we conclude
from (5) that w depends only on three indices, a convenient choice is

wib,c,d,a) =wlea+1h,eb+ tc,d — b) or Rfj* :I:(i. J, é(k — j)) . (M

Thus f is one-to-one only on the three-dimensional subspaces shown in (7).

(itiy Label conversion: Next we must extend f to f* and find its kernel and range.
For explicit calculations we observe that the constraint (6} is coded into (5) so all its
consequences are obtained when we substitute (S5) into (1) and try to convert it into (2).
This is easy to do: for example, in order to get the first term on the LHS of (2) right we
find that we should make the substitufions

a=zh-b  e=ilh-Sb  g=iti-p)+b.
This introduces jfy, jz and ky but then &, is fixed by
€+ Tk =¢eka +Tj2. &)
In the second term we can convert 4 and e into j3 and /), respectively, but 43 is fixed by
€k + Tl = €ks + 1j3. 9)

These are nothing more than (6) applied to the R-term in question, but with the third term
we get (after converting f into /3) one overall restriction on the free labels

=) —etp — W) + 723 — 1) =0 (10)
which decreases the number of equations from d° to d*. Similar results are obtained on the
RHS, the restrictions on the s are now

€hatrtiza=€jh+th el + Tho = €k) + 7| (11}

while the condition on the free labels is again (10). Thus the range of f* is IF?" subject to
(8)-(10) on the LHS, while on the RHS the restriction is (10, 11}. A one-to-one mapping is
then obtained for a six-dimensional subspace, the kernel is generated e.g. by b.

(iv) The common equation. Finally, we can write down the common equation to which
(1) and (2) reduce under (7). Using the further redefinitions k; = ek + j; on the LHS,
ky =tk + j, on the RHS, and Iy = j3 +el!, Iy = ji + 14} we find

> da k) B (o + €k, s 1) @ (J + Tk, fo ek + 2l 1 — K)
k

=Y @ 3. KB (1, o+ TR BB (h+ th+ el s+ ek, D] — k)
13

(12)
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Figure 5. The basic state of two intersecting strings,

In this final equation we have resolved all conditions following from duality. The equation
contains only one summation index, the functions depend only on three labels, and all
the labels are free (because [; does not appear). Thus we have 4° equations for 4°
unknowns. Furthermore, the reflection symmetry of (2) is preserved: the right- and left-
hand sides are exchanged if we exchange the first two labels of % and change 1 < 3 and
€T,

In the Wu-Kadanoff duality [12] one takes ¢ = —t = 1. This means that if two
adjacent cell spins point to the same direction the edge spin in between points up. For
R this implies that { + j = k + [ is the necessary condition for a non-zero R. When
the number of states is N = 2 and the index arithmetic is therefore {mod 2) the choice
of sign does not in fact matter and we always get the eight-vertex ansatz. However,
for N > 2 the two sign choices for €7 are genuinely different. The permutation matrix
R = 6;-'6}‘ is always included, but a diagonal R-matrix is included only with the above
choice ¢ = —7 = 1. On the other hand, the choice ¢ = 7 = 1 gives a manifestly left—right
symmetric restriction,

4. The tetrahedron equation

We will now derive the tetrahedron equations for three possible labelling schemes using the
above derivation of Yang—Baxter equations as a guide.

4.1. The basic state and the basic scattering process

To begin with we have a two-dimensional ambient space and in it one-dimensional objects,
straight strings. But this is not yet the basic state, for it we need two intersecting strings as
shown in figure 5. The two strings divide the space into four quadrants and they also cut
each other in two parts, fusthermore, we have a particle at the intersection of the strings.
Thus to fully label the basic state we need four vacuum labels, four string labels and one
particle label (along with two dynamical characterizations, the string velocity vectors, which
also define the motion of the particle).

The idea that the position of a particle is defined by intersecting strings has a precedent
in soliton physics. The (2 + 1)-dimensional Davey—Stewartson equation has localized
solitons {called ‘dromions’) that are exactly of this type. It turns out that in this (and
some other) soliton systems one can separate a physical and a ‘ghost’-fields. The ghosts
are normal plane-wave solitons but they do not show up in the physical field. However, at
the intersections of the plane-wave ghosts the physical field is excited, creating an object
that is localized in two dimensions [13].

For the basic scattering process we have to add one more straight string. The three
strings form a triangle and the initial and final states of the basic scattering process
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Figure 6. The initial and final states of the basic scatiering process of three strings.

Figure 7. A perspective view of the scattering of three strings, the vertical axis is for time,

look as in figure 6. First the triangle formed by the three strings decreases to a point,
turns over and then starts to expand again. A perspective view of the process with time
as the vertical axis is given in figure 7, During scattering the string velocities do not
change (elasticity) but the labellings of the inverting triangle can change. that is, the
vacuum at the centre, the three string segments at the sides, and the three particles at
the corners.

4.2. The three labelling schemes

The scattering process of figures 6 and 7 is characterized by a scattering amplitude which
depends on the various labels given in figure 6. Some of the labels may of course be
ignored. We will mainly discuss the following three labelling schemes:

{i) If we are only interested in the stale of the vacua the scattering amplitude is given
by [7}

w(alefg\bedih) (13)

where the rule is to write first the vacuum in the centre of the initial state {cf figure 6),
then the vacua having a common edge with the centre of the initial state (clockwise,
starting from the left), the vacua having a common edge with the centre of the final
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Figure 8. The two scattering scenarios with four strings. The frame of reference has been
chosen so that the intersection of strings 1 and 4 is stationary. The intersection point of strings
2 and 3 can now pass the 1-4 intersection point on the left or on the right and both scenarios
should give the same result.

Figure 9. A three-dimensional view of the two possible scattering scenarios,

state (clockwise, starting from right) and finally the new vacuum at the centre of the final
state. (Some authors use counterclockwise labelling [4].) For vacua we use lower case
letters from the beginning of the alphabet. If we look at the system in three dimensicns
with time as the third axis then vacuum labelling can also be called volume or cell

labelling.
(ii) In string (or face) labelling we write the process as
a finv
S 9

where the rule is to write on each row the labels of one string, starting from the bottom of

the leftmost string in the initial state and then clockwise (see figure 6). The last entry in

each section is for the string segment in the middle of the new triangle in the final state.
For strings we use Greek letters. (The convention in [1] is slightly different.)
(iil) In particle (or edge) labelling we write the scattering amplitude as {2]

R as

Here the lower indices give the corners of the triangle in the initial state, (clockwise, starting

from lower left-hand corner) and the upper indices refer to the triangle in the final state.
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Figure 10. The sequence of five different time-slices of four string scattering corresponding to
the LHs of figure 9. The triangle that is about to turn over is marked with a cross, the result
with a circle. All labels within and bordering the triangle change.

For particles we use lower case letters from the middle of the alphabet.

In addition to the quantum numbers that change during intevaction the scattering
amplitude could also depend on non-changing ‘spectator’ quantum numbers attached to
a particle or globally to a string.

4.3. The factorization condition

In analogue to section 2.2 we get a factorization condition when we add one more element
into the picture, With the fourth straight string the initial state can always be rotated into
the one given in figure &; the four strings make a arrowhead-like figure that points upwards.
We can now go to a frame where the top of the arrow stays fixed and observe the motion of
the intersection of the other two strings. Depending on the relative initial positions of the
stings this intersection can pass the stationary intersection on the left or on the right. Triple
intersections take place whenever either of these intersections crosses a third string. But on
the right- and lefi-hand sides of figure 8 the order of the triple intersections is different; the
tetrahedron equation is obtained when we require that both scenarios should give the same
resuit.
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Figure 11. The sequence of time-slices corresponding to the RHs of figure 9.

A three-dimenstonal spacetime description of this is given in figure 9. At the centre
is the tetrahedron of the tetrahedron equation, its corners have been marked by black
dots. The tetrahedron has different orientation on the different sides of the equation,
in the same way that the triangle is turned over in figure 4. In the following we
are interested in the labelling associated with the scatfering process. For that purpose
it is easier to look at a sequence of two-dimensional sections rather than the three-
dimensional tetrahedron, the five essentially different sections are given in figures 10 and
1.

Let us first consider the vacuum or cell labelling. Then following the diagrams of
figures 10 and 11 using the convention of (13) we get the d'* equations {equation (2.2) of

[7)
Y " wlasleacies|brbsbalg)w(c |baashi cages|ba)w(by|gescs|arbsbylcs)
£
xwig|bababs|cscacs|a)
= Zw(b1|0164csfdza4as|3)
5

xw(cilbaasas|geacs|an)wias|crgeslmbsal |esyw(glaiasazicacscglba) . (16)
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If instead we use string labelling (14) we get d** equations

a szpz S mnmn S st § mapnod

Z Smﬂ:y:.or myiv e pns | eapae
asfayion  @aBayaPs  Payapats - 0apavaoy

L1722 P4

= Y SERGR GRS s ARG samhm an
BaVaptaps of4ﬁ4.ow4 Tapeflevy  ORPIUILE
PI223 e
This is the original tetrahedron equation, (3.9) of [1], up to some label rearrangements.
Finally in the particle or edge labelling we get d'? equations [2]

iqk;kg likaks nlyloks Hsf.s kakske phakaly phitaly h!zi'a
thh RMJAJstzkue kakske — RJ:!JSJ& R}zJ'zkﬁthks kykaks (18)

where we have used the Einstein summation convention over the repeated & indices. We
may again consider Rs as matrices, which now operate non-trivially on three vector spaces,
and use, as before, the shorthand notation of writing only the vector spaces

Ri23 R145 Roas Rase = RasgRaagR1as Ry . , (19)

Since each particle is at the intersections of two strings, we could as well use the a pair of
string labels for each particle according to the following translation table:

1 =(12) 2=(13) 3=(23) 4 ={14) 5=(24) 6=034) (20)
which yields
Runose Ranasas Runuaes Reseaos

= Renaaes Runaaes Rusases Ranases) - (21)

At this point we would like to discuss briefly how the Frenkel-Moore equation [3] is
related to the tetrahedron labellings. This set of d® equations is given by

kikaky plilaks prihly pransae _ phiksky phibls phizng Fhifans
me Fkxkz.rq Fhk:ka Fl‘zfah quu F}lkah Fknkzb, hialy 22)
where summation is over the repeated & and [ indices, or in shorthand notation
FiaFraa FizaFps = FsaFi3s Fiaa Flos (23)

Note that when the rows in the string labelling (17) are turned into columns the index
numbering in (17) and (22) is identical. In fact, it turns out that the Frenkel-Moore equation
is obtained with string labelling, but the labelling is non-local: Let us assign to each string
a global index, which changes whenever the string takes part in a triple collision. When one
now goes through the sequence of scatterings in figures 10 and F1 with this convention one
obtains exactly (22). Such a global scheme would not work for the Yang—Baxter equation,
or for cell or particle labelling for tetrahedron equation, but for still higher-dimensional
simplex equations there can be several different non-local labelling schemes. This is based
on the observation that equations (21) and (23) are just two ways of distributing the indices
1234; this idea has been generalized to arbitrary dimension by Carter and Saito [5].

4.4. The spectral parameters

Above we have discussed the labels describing the quantum states of the particles, strings,
or vacua. In addition there are variables related to the dynamics of the strings (often called
spectral parameters) which we briefly discuss here.

The motion of a uniform string on a plane is given by a 2-vector perpendicular to
the string [1]. (In principle, we should also give the initial positions of all strings at
some initial time, but the basic principle in the derivation of Yang-Baxter and tetrahedron
equations is that the initial position does not matter, and therefore it cannot appear as
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a variable in the scattering amplitude.) In the three-dimensional picture, where moving
strings are represented by planes (see figure 9) we can give the orientation of the planes
by unit vectors u; perpendicular to the plane. Thus the scattering amplitude of the basic
process depends on three unit vectors and in the fetrahedron equation we have altogether
four unit vectors.

The vnit vectors can be represented by points on the unit sphere. Normally we are only
interested in the relative positions of these points and then for the four points we need five
real numbers. (A simple coordinate dependent parametrization is obtained by choosing one
point as the north pole, putting the second on the 0 meridian (one coordinate), and giving the
latitude and longitude for the remaining two.) A coordinate independent characterization of
the relative positions can be given by the angles & between the unit vectors, for this purpose
we write

Cij i =, U = cos(m — 9,‘_,‘) . 24)
There are six such angles but since only five of them can be independent, as shown above,
there must be constraints between them. In fact from spherical trigonometry it follows
that [1]
1 ez ¢13 €
ca 1 e e | o 25)
ci3 e 1 e
Cia C4 €4 1
It should be noted that this result extends to other dimensions [4] (in the Yang-Baxter
case we have a 3 x 3 matrix, but then the condition between the three angles u, w, v can

be linearized resulting with w = # + v, as was used in (2)). If we now write the angle
dependence explicitly (19) becomes {cf equation (21))

Ri23 (612, 13, 023) R145(012, 614, 624) R245(813, B14, B34) Rase (B3, Oa4, G34)
= Ris6(023, 624, B34) Raas (013, D14, G3a) R1as (O12, 614, 24} R123 (612, 613, 63) .
(26)
Solutions of the tetrahedron equations with other dynamical parametrizations may also
be interesting, but then one needs to discuss the meaning of these parameters. In any case

the dependence on dynamical parameters is quite independent of the labelling schemes and
therefore here we will not discuss this topic further.

det

5, Dualities between the labelling schemes

We will now construct the tetrahedron analogues of the Wu—Kadanoff duality between the
three labelling schemes. We follow closely the derivation used in section 3.

The general setting is that the Boltzmann weights map as w : /8 — C while (16) itself
is defined on I®1°, the string scattering amplitudes as § : I®'2 — C and (17} is defined
on 1%, and finally for the particle scattering amplitudes we have R : I®® — C and (18)
is defined on I®'®. We must now construct maps F that connect the pairs as follows:
w=RaoFgp wW==50F, and § = Ro Fy.

3.1. Duality between vacuum and particle labellings

The first step is to express the scattering amplitude w of (13} in terms of the R of (15).
According to the principles of hierarchy, locality and linearity each index of R is given by
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a linear combination of the vacua (cells) around the corresponding particle (edge). From
figure & we get, after checking also that labels match (step (i) in subsection 3.2)

_ pud+Bhiybifiah+fotyg+ob,ad+Setyct-bh
w(alefglbcdlh) = Rnré+ﬂc+yg+5a,aa’+,8e+ya-i-b‘f.cxf+,8u+rg+5.& (27)

from which Fyp can be read off. The constants o, B, y, & are the parameters of the map
Fyp and we will later find restrictions on them.

As for step (ii}, constraints on R, we observe that in (18) there are six summation
indices, and in (16) only one, thus we must get at least five conditions through the four
Rs, that is, one condition is then not enough but we need two for each R. The constraints
can only be conseguences of the particular form of R in (27). Depending on the choice
of parameters ¢, 8, y, § one can obtain linear relations among the labels of R and we can
then define R = ) when these relations do not hold

R =0 unless Ay + Ayj + Ask+ Bil + Bam + Byn =0,

Using equation (27) and requiring that these linear relations be true for all values of
a,..., h yields eight equations. These can be easily solved for A;, B; under certain
restrictions on «, B, y, 8. There are two non-trivial results, with vP4: ay = 8§ and
Veg: ¢ =y =0, B+ 8 =0, which we now discuss separately.

5.1.1. Case vPs with all parameters non-zero. In the first case we find that if @y = 8
we can impose two relationships between the labels of R and thus we can define

R =0 unless o+ Bi=pfm+aj and ym+Bj=pn+vk. (28)

To get the corresponding condition for w we may assume that the / and n labels of R in
(28) are determined from the others, and then we get

wlalefglbed|h) = walae + Bc + yg + 8a,ad + Be + ya + 6f,
af + Ba+ yg+db,ah 4+ o+ yg + 5b) 29)
or
e = wall, J.k,m). (30)
To prove that a duality exists between (16) and (18) we substitute (27) into {16) and
convert it to have particle labels of (18). (We also use vy = 85 to eliminate 8.) In the
process one finds restrictions on the labels, five of the eight conditions relate &;, on the LHS
as

aky + Bjy = ajx + Bk vka+ Biz=vis + Bka aly + Bk = ajs + Bha

. . . (31)
Yka + Bja = vJjs + Bks Yia+ Bks = vjs + Bhe
and on the RHS as
oedy + Bkt = ok + Blo vl + Bk = yhk3 + By Vit Bky = yks + Bls (32)

aky + B = aks + Bly vka + Bjs = vks + Bls

and the remaining three restrict the unsummed indices:
a?(ja = 1) + @Bz —jo) + B7(j — 1) =0
af(is— 1) + By (s — ) +ay(a — js) + B2Us — 2) =0 (33)
B*(ja = Ig) + By Us — js) + y*(s —1s) = 0.

This means that the range of F, is ten-dimensional and thus its kernel should be five-
dimensional. Indeed one finds during the label conversion that it can be generated by

{a1. c1, €2, €3, ¢s).
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After this it is possible to write the common equation to which (16) and (18) reduce
under duality, in terms of @, defined in (29) or (30) it reads

Yialits Jar 3 KYBAU2 + B = 1), ja, Js, 1 + BRYDACR, Iy + BE, jo, L)
xXWaljz + Pk — ja), ja+ 75 — Js)+ BPk. By + Pla — jo) + B, 1 + #1a)
= Y, Walfss Js, Jor KYBACir Jar s + Pl ~ jo)o 1 + PRYDA L, I + ko kL)
xWalf + Pk + Bls — 1), Ja+ BUE — J2) + Bk, js + Bl — j3), 1y + Bla)
(34)

(where we have used the further definitions 8 =B, y = 87, I, =l — Bl, I = Is + pla,
and eliminated [y, 5, I using (33)).

In this equation we have resolved all the conditions from vaceum-—particle duality. The
function @, depends on only four labels, and in the equation there are altogether nine free
labels. Thus we have d® equations for d* functions. It has the original symmetry that the
LHS and RHS are exchanged if we exchange the first and third variables of 1, and the labels
as 1 <> 6, 2 « 5, and change the parameters 8 « 7.

3.1.2. Case vP, with some zero parameters. Above we assumed that all the parameters
o, B, v, § were non-zero. The form of (28) is such that 8 must be non-zero (if not we must
also have o or y vanishing and then there is only one constraint). We could, however,
assume that @ = § = 0, which yields

R =0 unless i=m ym+ Bj=P8n+yk (35)
or y =4 =0, which gives
R =0 unless j=n al+Bi=p8m+aj. (36)

For both of these § = 0, but if § £ 0 we can eliminate g from (28) and write the conditions
as

84 yi=ym<+8f sm+aj =an+ 5k.

Now we get two further possibilities, for § = o =0

R =0 unless m=k &8l +yi=ym+35j (37)
andfor =y =0
R =0 unless [=j ém+oj=an+sk. (38)

These four possibilities are really various reflections of each other, so it is sufficient to
discuss only one of them here. Let us assume that y = § = (. In deriving (31)-(33) it was
assumed only that 8 and o were non-zero so we can use these results, the constraint (36)
is also such that we can solve ! and # in terms of the others. Thus the final result is just
(34) with ¥ =0, i.e.

S Boi, Jau Ja, K)o + Blk — 1), Jan Jsi b + BlYDo(k, 15 + Bk, js, Is)
xWo(Jj2. ja, s + Bk, 1)
= 3 Wolfs: Js, Jo, kYo (2, Jas J5: 1) 001, I5. &, 1a)
xWo(ls + Blla — 1), ja+ Bls — ja), s+ Bk — ja), [y + Bla) . (39)
The result simplifies considerably, and the most interesting feature here is that on the RHS

the second term does not contain the summation index.
The other three possibilities give similar results.
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5.1.3. Case vpg. For this solution the parameters are restrictedby ¢ =y =0 and 8 = -4

(for simplicity we assume g = I, 8§ = —1), and thus

wialefelb cdiiy = R0 (40)
and we can impose the constraints

R;'}';":O unless m=i+k j=Ii4+n. (41)

In this case we solve for m and j in terms of the others and define wg by
w(alefgibed|h) = wg(c —a,a—b,h— f,e—h) or R = g, k, 1, n).

¢

(42)
As in the previous case we can next work out the constraints this implies on the indices
of the tetrahedron equation, on the LHS we gat
ko=j+ s kst ki = f ks = js+k ks = ja — 1 kg = js 4+ ki —
(43)
and on the RHS
ks = jz+Je kg t+hks = Js ka=UL+1h ks+ks=ja+ js ki thki=1h
(44)
while for the unsummed indices we get
h=h+h+Js Is+lb=ja+js =lh+h+ls. (43)
The common equation in terms of wg reads (L =14, + js, ja = ji + 1 +1s)

Yowp i, Js, ky jo — KYwelk, js. lh, fi + le)
XWp(jr + J3, Jos Js + 1o, k — L) (ja = k k= I3, Jau ls)
= 3" ws (s, Jor Js — k, K)Be{j2, k, jy + L1 lg)
xWa(j1, jz + Jo. by Kk, J2 — )Wl + &, s — k. 1, Jg) - {46)
This has again the symmetry exchange symmetry mentioned before, now the LHS and RHS

are exchanged if we exchange the first and the second, and third and fourth variables of g
and the labels as [ < 6, 2 « 5, except that [; < —/;.

5.2, Vacuum—string duality

To get a duality between vacuum and string labellings we assume (hierarchy!) that each
string label is determined by the two neighbouring vacuum labels, from figure & and label
matching we get (cf [7], equation (2.4))

ectrg.cetraedtrf,chtrh

= O cetreeatrg.ef-tehedtth
w(alefglb(:dlh) S sz.’+re.ef+rfz,efb+zg,ek+rr 47

which defines F,,. Since there are only two free parameters we assume that both of them
are non-zero. Using the same method as before we find that (47) implies five relations
between the indices of S:

S wfrm =0 48)

7Yt
unless

ta) + €8 = €az + Th thten=€eh+tn TVt ey =€+ Th
To + €V = €3 + TV3 Xos — y1) + €1(yr — ) + ey — 1) = 0.
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This reduces the number of relevant labels from 12 to 7. The conditions seem to be much
more than we need to restrict the summation in (17) to that of (16), but when one observes
the way the surmmation indices are distributed in (17} the conditions appear more reasonable.

We can use (48) to determine 83, 1, 3, ¥ and 13 and then we find that w depends
only on seven variables, we can take, for example,

wlalefglbcd|h) = W(ec + g, ce + tc,ed +te,¢e+ ta, ef + ta,ef +th, ed+ Th)

(49)
or
oy fy x*
S o1k = W(aira?.? 3, ﬁls ﬁgs Y2, 1’2)- (50)
asfly ¥

When cne now substitutes (47) inte (16) and converts the vacuum labels to string labels
it turns out that in the resulting expression the labels o, o, o3, 4, B1, B3, Ba, Y2, b2, 3, V2,
v3, o3 and one of the ps can be taken free, all the others are then determined by the following
equations:

—z€ + B17 = BT+ ey =0 o T —az€ + fr€ — far =0

=Bt pre—eyp+ T =0 — € e+t — T =0

og€ + BaT —epy — T =10 Bac — €z —at + T =0 (51)
—evy +evy+ 3t —ar =0 €ys— ey — T+ puar =0

—€h tery+mT—mr =0 —oT +evg —eoy + et =0

—a3T + g€ — €0y +ogt =0
for the free indices, while the ps are related on the RHS as
—€p+emtmr—or=0
—€iy+€p3+ 3T — 2t =0 (52)
—B3T + Bs€ —€p3s + paT =0
and on the LHS by
—€y1 +epr+ 2t — 1T =0
00T — 36 +€pp — 3T =0 (53)
—o4€ + €V + P2t — paT = 0.
These conditions mean that the 4'4 vacuum equations and d?* string equations collapse to
‘only’ d'? equations. Since the range is 14-dimensional the kernel is one-dimensional, it
can be generated by cs.
Finally we can write down the common equation in terms of the intermediate function
W of (49) or (50) as follows (T = t/€):
Wi, B + T = o), s, B, B3 va, k)
xW((k — a3)/T+ Bi — B3+ va, ko va + Tlag — v3) + T2(vs — B)
+E(By — 1), @3 + T(Bs = 1), Bas Bat vy — va + T(vs — F3)
+T2(By — @), v Wienr, (k — e3)/T + 1 + Eley — Bo),
k= vy T(By — va) + THen — Bo), (k —3) /T4 B — B3+ 1,
(i ~w)/T - +r+v+T(B—) ps v3)
X W (B + Flon — B2, s, v + Tlas — v3) + T2 (v — B + B (B — ik,
k =034 vy + T(By = va) + T2t ~ ), 13, 03)
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=3 W B B va. (=) /T — B+ o+ v+ T(B —ay), s, k)
XW (B, a3, v2 + Tlaz — v3) + T2(wg— Bi) + T°(B — 1), o5 + 2(B3 — B1),
Ba k, o3} W (e, i + Tler ~ po),
(03 — 1)/T + w3+ T(B1 — wa) + T2as — Ba), Bi, (k — Ba)/T
+B3, (k= Ba—vi +)/T+ B+ pz —va + T ~ B2), (03 — v2)/T + v3)
XW((vs —1)/T + p3, (03 — 12)/T + 13, 03,
(03 — v}/ — B+ k + vy + T(Bs — va) + T2 — Ba). K,
Ba+ v — vyt (v — B3} + THB — 1), m). (54)

3.3, String-particle duality

We proceed as before: first, by hierarchy, locality, linearity we find that § and R are related
by

B byt pwreu HnpE e B Ly
Soafriave = Rip i rog tom tnfan oy +apns £yttt (55)

where the 24 free constants have been reduced to 4 by label matching. This defines
Fp: 12— 18

Next we must find the label restriction that (55) allows; the results can be grouped into
two cases, which bear interesting relation with the two cases of vacuum-—particle duality.

5.3.1. Case sp4. The first solution is obtained if n = ¢ = 0, then we can impose the
condition

R =0 unless &1 + wi = wm + &f (56)
another solution follows if we take instead @ = & =0, and then we get
= unless nm+¢j =¢{n+nk. (57)

One immediately recognizes these as the two parts of the case VP, in (28): in the first case
one identifies £ = ¢, w = B and in the second case ¢ = B, n = y. Thus the string—particle
duality follows {with proper parameter choices) from vacuum-particle duality, because for
the first one we need to impose only ‘half’ of the conditions of the second one,

One can now work out the conditions of either half as has been done before, but we
will not do so here, because their combination as given in VP4 is in practice probably the
only important one.

5.3.2. Case sPp. The other case is obtained if we have ¢ = —§, 5 = —w, then we have
the restriction

RImn = unless w(m—i—k})=—-E(j —{—n). (58)

This is a combination of the two conditions of case vPg (41), thus again the existence
of B-type vacuum-particle duality implies the existence of a corresponding steing particle
duality. The detailed computations proceed as follows.

If we use (58) to determine j in terms of the other labels, we find the corresponding
condition for S as
S ERAY = 5B — bon + wes — 0, 1 — 65+ B2 — s 1 — §va + v — o,

Ev) = Evs ++ wory — s, vy — Easy + ooy — wvs) (59
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or

R — 8(i, k, 1, m, n). (60)
Next we substitute (55) into (17} and convert to particle labelling. In the process we

find that on the LHS the summation indices are restricted by
E(a—ki—ks}+aw(—j1—3+k)=0
E(a—ks—l)+ao(—js—ki+ky) =0 (61)
Eha — kg — ) +w(~js—ka+ 1) =0

and on the RHS by
E(js—ks—ke) +w(—fzs~ je+ks)=0
E(—jat kit i)+ w(ja~kat+ks}) =0 (62)
E(-k +hy—Iy+w(~ji—ks+1) =0

and an the free labels on both sides we get one condition

Ea—h—b—l)t§o(—p—js+h+)+0 (h+ s+ js—lL)=0. (63)

This means that the range of Fy is 14-dimensional, and hence the kernel 10-dimensional.

Indeed we find that the kernel is generated by {es, 53, Ba, Y4, Pa, V3, Va4, (2, {43, Ha).
Finally we can write the common equation in terms of S using (63) to eliminate jy:

> 86 bk i+ s 'f;(kl +ks = j2), ks)Sky, Js, b kr ks + ke + 1o
ks ks

w. . w
—jht “E‘(Jl + it js—la), s+l + E(ks + ks — Is))

XS+ s + %(fq ks = Jo) Joo bas I, k) Sy sy L3, B )

= > S0 je ks, Jo + 3 + i(ke + k3 — Js), ke}
nds s ®
Taitdy

x5 ke ls+ 1 + —‘;’—(ka+k1 — ) ky s+ ke s

@, . .
—Js+ E(Jl + 53+ s —13), lg)

X8t Jo+ s + = (ks + ks = i), K1, I, 1980k, s Dy ) (64)

This again has the reflections symmetry of the original equation.

6. Simultaneous dualities between all pairs

Above we have analysed the dualities between pairs of labelling schemes. In this section
we will discuss the possibility of a having simultanecusly dualities between two or even
three pairs of labellings. It is natural to assume that such pairs of dualities would imply
relations between the parameters used to define the maps F, and we will try to satisfy any
further conditions primarily by imposing relation on these parameters.

Let us first consider simultaneous existence of vacuum-particle and vacuum-string
duality. For both dualities the conditions for their existence can be written as a condition
on how the Boltzmann weights actually depend on the vacuum labels, (29} or (42) versus
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(49). From these we can see that it will be possible to satisfy the requirements for vacuum--
string duality as a consequence of vacuum-particle duality, if the right-hand side of (29) (or
equation (42)) can be expressed in terms of the combinations €¢ + tg etc on the righi-hand
side of (49). For case VP, (for which oy = 8§) it turns out that this can indeed be done,
provided that

(at — Be)(ft — ye) =0. (63)
This is a compatibility condition on the parameters used in the definition of the dualities and
as said before we will first implement them. If equation (65) holds and we have vacuum-
particle duality, we can then impose the restriction W = @, and gst at the same time
vacuum-string duality. For example, if we use the first factor of (63) we get

W (X1, X3, X3, X4, X5, X6, X7) = WA((BTX2 + €y (X5 — X2) + yT21) /7%, (Bx3 + yxs)/7,
(BTxs + €y {xs — x2 — X5+ Xg) + 1) /77,
(Be(xy — x3) + By + €y (x4 — X3 — X5 + X6) + yTx,)/7%) (66)
and this also implies that (54) becomes (34) (after a change of labels). For case vpy jt

turns out that no extra conditions on parameters are needed: wg of (42) is automatically a
function of the variables in W and we can impose
W(xy, x2, X3, X4, X5, Xg, x7) = wp{(¥2 — x4)B/7, (x5 — x6) B/,

(€(x7 — x3) + T(xs ~ x5))B/(eT), (x3 — x7)B/7) (67)
and as a consequence (34) reduces to (46). Thus in either case a vacuum—string duality can
be obtained, once the vacuum—particie duality has been established.

For vacuusm-—particle and string—particle dualities the condition can be best written on
R, (28) or (41) versus (56), (57) or (58). But as we have already observed in section 5.3,
the first duality implies the second one when the parameters are chosen properly.

Next let us consider simultaneous vacuum-string and string—particle dualities. Here we
are interested in the composition F‘,jp = Fy o F,;, which defines a map from vacuum to
particle labels. It can always be made and it is then interesting to see how it is related to
the already discussed dualities of VP and VPp. In the first case of 8Py weputn=¢ =0
and then it turns out that the resulting Fy; is the same as that of VP, if we identify

n=t=0: wo=c¢t B=ew Y =T §=rt. (68)
In particular, we recover oy = B8, which is the defining relation of the map vPs. For the
other case SP5; we have to put @ =-£ =0 and then VP4 again follows when we identify

w=5=0: o=c¢ B=r1¢ Yy =nt §=¢n. (69)
Recall that each of the two choices of 5P4 yielded only one of the two condition of vy,
the extra restriction from simultaneous vacuum-string duality has now somehow created the
missing one. Recall also that the simultaneous existence of vacuum—particle and vacuum—

string dualities is possible for case VP, if condition (65) holds, it now turns out that the
first factor of (65) vanishes antomatically for (69}, the second for (68). Finally, when the

string—particle duality is given by SPg we first put § = —w and { = —~& and then the
composed map is that of vPg (where we have ¢ =y = 0), if
n+w=_{+ét=a=y=0 B=(w—1§) = —{ew — 1&). {70}

Note, in particular, that in this case we get a non-vanishing condition on the parameters,
we must assume that ew — 78 # 0,

In summary, if the conditions of A- or B-type vacuum-—particle duality are satisfied
one can always find compatible parameter values for the vacuum—string and string—particle
dualities so all three can coexist.
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7. Examples

The original solution of Zamolodchikov [1] was for a two-state model given in the string
labelling. It passes conditions for A-type duality, and indeed, the detailed studies of Baxter
[7] were done in the vacuum labelling, and in [4] this solution was written in the particle
labelling. This solution has full spectral parameter dependence, with the determinantal
relation (25} and therefore checking the solution is quite tedious, see [7] for details.

In [9] Korepanov gave a two state solution that is very close to passing the requirements
{41) of B-type duality: instead of (41) R is non-zero when m =i§ + k4 (i + )k + n) and
J=I{+n+{+DE+n). We present here a slight modification of Korepanov’s ansatz
which does pass the duality conditions; in this new solution the non-zero components of
R(;j)(;‘,c;)(jk} are as follows:

000 _ pOll 100 _ plio 001 _ pUI _ ol _ i
Rooo = Ro1p = Rigr = Rjg =1 Rij) = Roo1 = om—Rmo*—“—"
om 110 100 Sik 000 o011 110 * 101 70
_ i _ 5i _ _
Roor = Ryip = — Ry = — Ry = E Rior = Rijg = —Roi1 = —Rogo = €515k
4

where € = & and the s;s just have to satisfy

222 .2 2 2
.S‘,j.S',k.s‘Jk —SH _St'k +Sjk (72)

which is solved by Korepanov’'s parametrization
57, = tanh(g; — ;). (73)

The ‘spectral parameter’ ¢; is attached to string / and could, for example, be related to the
string velocity, rather than to the spherical angles as was the case with Zamolodchikov's
solution.

8. Discussion

In the first part of this paper we have derived, from the string scattering point of view, three
kinds of tetrahedron equations corresponding vacuam (cell) labelling (16), string (face)
labelling (17) and particle (edge) labelling (18).

In the second part we have studied the condition under which analogues of Wu~-Kadanoff
duality can be established between these labelling schemes. The final result is that there
are two essentially different ways this can be done, and then with proper choice of the map
parameters it is in fact possible to have a simultanecus duality between each of the three
pairs of labellings. In terms of R the conditions and resulting eguation can be obtained
already from vacuum-—particle duality and for the two alternatives they are given in (28)
and (41). The other dualities then follow if we choose the remaining parameters properly,
i.e, according to (69)—«70). This is a very satisfactory result: the labelling schemes and
dualities form a coherent structure where everything fits together well.
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