
Labelling schemes for tetrahedron equations and dualities between them

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 5727

(http://iopscience.iop.org/0305-4470/27/17/010)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 27 (1994) 5727-5748. Printed in the UK 

Labelling schemes for tetrahedron equations and dualities 
between them 

Jarmo Hietarintatf 
LITHE*, Tour 16. le' etage, 4, place Jussieu, F-75252 Paris Cedex 5. France 

Received 1 March 1994. in final form 6 July 1994 

Abstract. Zamolodchikov's tetrahedron equations, which were derived by mnsidering the 
scattering of straight strings, can be written in three diiierent labelling schemes: one can use 
as labels the states OF the vxua between the strings, the states of the string segments, or the 
states a i  the particles at the intersections of the strings. We give a detailed derivation of the 
three corresponding tetrahedron equations and also show how the Frenkl-Moore equations fits 
in as a non-local string labelling. We then discuss how an analogue of Lhe Wu-Kadanoff duality 
can be defined between each pau of the above three labelling schemes. It turns out thal there 
are two cases, for which one on simultaneously mnsrmct a duality between all three pairs of 
labellings. 

1. Introduction 

Now that a quite good understanding of (l+l)-dimensional integrable systems (both classical 
and quantum, continuum and discrete) has been obtained, attention has turned to higher 
dimensions where serious difficulties have been encountered. The various approaches that 
were successful in 1 + 1 dimensions have different natural extensions to 2 + 1 dimensions 
and it is not clear which method is best. It is therefore important to push each one and 
hopefully they will illuminate different aspects of 2 + 1 integrable systems. 

In this paper we consider the extension of the Yang-Baxter equations to 2+1 dimensions. 
The fundamental work in this problem was done at the beginning of the 198O's, first 
by Zamolodchikov [ I ] ,  who derived the relevant tetrahedron equations by studying the 
scattering of straight strings. In this formulation it was natural to use the quantum numbers 
of the string segments (faces in the lattice formulation) as labels. Subsequently Bazhanov 
and Stroganov [Z] wrote down the equations corresponding to cell and edge labelling. A 
different type of edge tetrahedron equation has been proposed by Frenkel and Moore [3]. 

Higher-dimensional generalizations of the tetrahedron equations have also been 
discussed in the literature. The 4-simplex equations already appeared in the above paper of 
Bazhanov and Stroganov [2] and d-simplex equations have been discussed, for example, by 
Maillet and Nijhoff [4] and Carter and Saito [5 ] .  For related geometric constructions, see 
161. 

In all formulations the number of equations is huge even for the simplest two-state 
model, and subsequent progress has been slow because it has been exceedingly difficult to 
find solutions (especially those with spectral parameters) to these equations. The original 
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solution proposed by Zamolodchikov [ l ]  was studied in detail by Baxter [7], and only quite 
recently some further solutions have been found [lo, 131. 

Much of the work on tetrahedron equations has been done in the framework of solvable 
lattice models. Each formulation has  its own natural properties and from time to time it is 
useful to look at all of them for inspiration. With this in mind we return to the original 
formulation of straight string scattering, and from this point of view look in detail at the 
properties of the various methods of labelling the tetrahedron equations. 

Our main objective is to study the analogues of Wu-Kadanoff duality in the tetrahedron 
situation. The duality between the vertex and face formulations of the Yang-Baxter 
equations imposes certain restrictions- for the existence of non-zero elements of the R -  
matrix. These restrictions amount to the very important 8-vertex ansatz, and our hope is 
that also in the tetrahedron case duality will lead us to fruitful ansatze. 

The organization of this paper is as follows: in the next section we start by rederiving 
the Yang-Baxter equations in detail. because we want to use the analogies in the tetrahedron 
case. We also discuss in similar detail the well known Wu-Kadanoff duality that connects 
the two formulations of the Yang-Baxter equations under certain circumstances. In section 4 
we then derive three versions of the tetrahedron equations. They differ by the choice of 
labels, we can use 3s labels the state of the vacuum between the strings, the state of the 
string segments, or the state of the particles at the intersection of the strings. The Frenkel- 
Moore equation will also be obtained if we use non-local string labelling. In section 5 
we will derive a duality between each pair of tetrahedron equations, in analogue to the 
Wu-Kadanoff duality. This implies certain restrictions (which are explicitly written out) on 
the functions. When these restrictions hold both equations reduce to a common equation 
that has fewer labels and summation indices. Finally we consider the possibility of one 
equation being dual to the two others. 

Our main result is the indentification of two cases, for which there can simultaneously 
exist a duality between each pair of labelling schemes. 

2. The Yang-Baxter equations 

In this section we review the particlc.scattering derivation of the Yang-Baxter equations. 
This is done i n  some detail, because analoguous steps will be followed in the derivation of 
the tetrahedron equations. 

2.1. The basic state and the basic scattering process 

The Yang-Baxter equation can be interpreted as describing scattering, with a factorizable 
scattering matrix, in 1 + 1 dimensions [IO]. The ambient space is one-dimensional and the 
fundamental state is a point particle moving with a constant speed, see figure 1. The particle 
divides the space into two parts and the state of the vacuum can be different in them (in 
this case the moving particle can be modelled by a kink that interpolates between the two 
vacua). In the general case we must therefore use three labels (in addition to a dynamical 
characterization by velocity) to completely describe the basic state. 

The basic scattering process is obtained if we have two particles moving with different 
velocities. Initially the particles approach each other, scatter, and finally recede from each 
other, see figure 2, During scattering the momenta do not change, but the internal states 
of the particles can change, as well as the vacuum between them. Thus, in principle, the 
scattering amplitude could at the same time depend on four vacuum labels and four particle 
labels, in addition to the relative momenta (or the angle between the intersecting trajectories). 
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Figurr 1. The basic state and its labelling. Flure 2. ?be basic process: Particles i and j collide 
resulting in particles k and 1. The collision is elastic in 
the sense thnt the momenta do not change and inelastic 
in that the colliding particles and the vacuum between 
them can change. 

Usually one uses only vacuum or particle labelling. Vacuum (or ‘face’) labelling is used 
e.g. in the ‘interaction round a face’ (IW) formulation of lattice models [ I  I], where the 
scattering amplitude of figure 2 is given by the ‘Boltzmann weight’ w(b ,  c, d .  a;  U); here the 
first label is for the vacuum between the incoming particles and thereafter counterclockwise. 
In particle labelling (or vertex formulation of lattice models) one uses the R-matrix and the 
amplitude of the above process is R t .  

2.2. Condition from facforizability 

The above describes fully what can happen with two particles. The situation becomes 
more interesting when we have three particles. Since the two-body scatterings are elastic 
(momenta do not change), the approaching particles will undergo precisely three of these 
pairwise scatterings before they fly out again (figure 3). The order in which they take place 
depends on the relative initial location of the particles, and the natural assumption is that for 
the three particle scattering amplitude the order should not make m y  difference. Pictorially 
this is stated in figure 4 [IO].  

The equations following from figure 4 depend on which labelling scheme we are using. 
If we use vacuum (face) labelling, where the scattering amplitude of figure 2 is given by 
w(b, c. d .  a;  U )  the condition of figure 4 gives [ I l l  

w ( b ,  c. g, a;  u)w(c. d ,  e .  g; U + u)w(g, e ,  f , a ;  U) 
d 

= w(c, d ,  g, 6; u M b ,  g, f ,  a; U + U))w(g, d ,  e .  f ;  4. (1) 
d 

There is just one summation index, the vacuum inside the triangle, which appears in all 
scattering amplitudes. 

If we use particle (vertex) labelling and the scattering amplitude for the scattering process 
figure 2 is given by R!,!(u) then the condition of figure 4 gives 

(2) 

In this case there are three painvise summation indices (k t )  so we have used Einstein’s 
summation convention. Because of this we can consider R as a matrix operating on the 

R ? I ! ~ ( ~ ) R ~ ~ O  (U + u ) R ~ $ ~ ( u )  = R;;;(u)R;;’$(u + u ) R ~ , ~ ~ ( u ) .  1112 
1111 I Ji 
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Figure 3. The two possible three particle scattering scenarios with the same momenla but 
different initid position of particle 2. 

............... ..... 

Figure 4. Pictorial representation of the factorization condition, 

tensor product of two vector spaces, while the equation itself is defined on the tensor product 
of three vector spaces. Thus we can use the shorthand notation 

RtzRt3Rz3 = R ~ R t 3 R i z  (3) 

where we have only written out the names of the vector spaces on which R operates non- 
trivially. The matrix interpretation has many important group-theoretical consequences, for 
example, it is easy to see that (2) is invariant under 'gauge' transformations 

Rap + (Q, @ Qp)Rap(Q, @ Q p ) - '  (4) 

where the Qs are non-singular ordinay matrices. 
Both of the above Yang-Baxter equations (YBE) follow then from factorizability, they 

just differ i n  their labelling. And even this difference is sometimes just f o r d ,  as we will 
discuss next. 

3. The Wu-Kadanoff duality 

The vacuum (face) labelling and particle (vertex) labelling are not completely isolated: under 
certain restrictions (which turn out to be of practical significance) one can establish a well 
known duality between them [12]. Here the derivation is again done in detail because the 
analogies will be used later with the tetrahedron equations. 
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Previously, the nature of the labels was left open, because no structure was necessary. 
However, now we have to do some algebra with the indices and thus we have to discuss 
the domain we will be working in. 

Let us first recall the setting of the original lattice work. The face (vacuum) and edge 
(particle) labels were given by the state of a spin, either up or down. For models with 
more than two states the values of the state labels could be modelled by integers modulo 
d ,  or for more exotic modeIs by pairs of integers modulo d .  etc. In general we assume that 
the labels are elements of some Abelian group I .  For spins one often uses multiplicative 
notation for this group, but in this paper we use additive notation. 

In the following we have to do some simple arithmetic with the labels. In general, 
the vacuum and particle labels could be from a different Abelian group, but to simplify 
notation we take them to be the same, I .  We will need a linear map from I to I with 
some parameters, we assume that the parameters belong to ring 72 so that I will be an 
R-module. In fact we will assume that the parameters belong to some (finite) field 3. The 
most common example is that F = integers modulo a prime number p ,  and I = 3”. 

Thus the vacuum labels of the Boltzmann weight w belong to I, and w itself defines 
a map w :  IT4 + C. Similarly the particle labels of the scattering amplitude belong to I ,  
and R: + C. 

In order to define a duality relation between two labelling schemes we use the following 
basic principles. 

(i) Hierarchy: the scattering amplitude of a labelling scheme with fewer summation 
indices in the factorization condition is expressed in terms of those whose equation has 
more summation indices. 

(ii) Locality: the state of a particle is given by its nearest neighbour vacuum states. 
(iii) Linearity: the above dependence is linear. 

3.2. Details 

The above principles imply that the duality between w and R is given by w = R o f ,  or 
explicitly (cf figure 4) 

with eight constants e ; ,  ri, that are free at the moment (in the simplest case we expect 
these constants to be i.1). This defines the local maps fi : I,?’ + I,, for example 
j ,  := fj(a. b)  = cla + sib, and the function f : --t I,” mentioned above is their 
extension to the domain of w, as given in (5). We must in fact extend f to the full space in 
question, defining f’ : I,?’ -+ I:’, and verify that with this mapping the two equations (1) 
and (2) reduce to a common equation. To do the above we proceed in four steps: 

(i) Label matching. In equation (5 )  there are four different pairs of E and 5 coefficients, 
but they cannot all be free, because in (2) the k ,  indices, for example, appear in different 
places in R and they must of course have the same expression. For example, from the two 
kls on the LHS we conclude that € 3  = EI and q = rl. The final result is that the dependence 
on the subscript is trivial, E: = E ,  r, = s, Vi ,  i.e. functions fi are all alike. The extensions 
to f and f’ follow then straightforwardly. 

(ii) Cownstraints on R and w. In (2 )  there are three summation indices, in (1) only one; 
the range of the map f * cannot, therefore, be the full I:’. We can reduce the number 
of summation indices only by introducing constraints of the type ‘ R  = 0 for some index 
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values', which means that we must look at the range of f and define R = 0 outside. The 
label restriction on R must in  general have the form 

Rk! = 0 unless 

where the constants A ,  B ,  C, D are determined by f ,  i.e. the form of R used in (5 ) .  The 
labels a ,  6 ,  c, d are here free and we need a non-trivial solution of 

A(6a + rb)  + B(Eb + I C )  + C(6d + rc) + D ( E ~  + rd )  = 0 
on the whole I,?" This is easily found, we get A = - D  = E ,  B = -C = -1, hence the 
restriction must be 

Ai  + B j  + Ck + Dl = O  11 

R:=O unless ei + rk = E L  + r j .  (6) 
Since we can determine the upper right label, say, of R from the others we conclude 

from (5) that w depends only on three indices. a convenient choice is 

w(b. c, d ,  a )  = G(ca + rb, 6b + rc, d - b) 

Thus f is one-to-one only on the three-dimensional subspaces shown in (7). 
(iii) Label conwrsion: Next we must extend f to f* and find its kernel and range. 

For explicit calculations we observe that the constraint (6) is coded into (5) so all its 
consequences are obtained when we substitute (5) into (1) and try to convert it into (2). 
This is easy to do: for example, in order to get the first term on the LHS of (2) right we 
find that we should make the substitutions 

or RP = G(i, j ,  ; ( k  1 - j ) )  , (7) 

This introduces j , ,  jz and k j  but then kz  is fixed by 

cjl t r k ~  = t k z  + r j z .  

ckl + rll = 6k3 4- rj3. 

(8) 

(9) 

In the second term we can  convert d and e into j3 and 11, respectively, but k3 is fixed by 

These are nothing more than (6) applied to the R-term in question, but with the third term 
we get (after converting f into 1 2 )  one overall restriction on the free labels 

&jI - 13)  - cr(  j2 - z,) + rZ( j3 - 1 1 )  = o (10) 
which decreases the number of equations from d6 to dS.  Similar results are obtained on the 
RHS, the restrictions on the ks are now 

(11) ck3 + r j ,  = Ejz + skz € 1 2  + rkz = t k l  t rll 
while the condition on the free labels is again (10). Thus the range o f f '  is I:9 subject to 
@-(IO) on the LHS, while on the RHS the restriction is (10, 11). A one-to-one mapping is 
then obtained for a six-dimensional subspace, the kernel is generated e.g. by b. 

(iv) The common equation. Finally, we can write down the common equation to which 
(1) and (2) reduce under (7). Using the further redefinitions k1 = ek + jz on the LHS, 
kf = rk + j z  on the RHS, and 1 ,  = j3 + e l ; ,  l3 = j l  t 51; we find 
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In this final equation we have resolved all conditions following from duality. The equation 
contains only one summation index, the functions depend only on three labels, and all 
the labels are free (because /2 does not appear). Thus we have d5 equations for d’ 
unknowns. Furthermore, the reflection symmetry of (2) is preserved: the right- and left- 
hand sides are exchanged if we exchange the first two labels of Ui and change 1 cf 3 and 
E cf r .  

In the Wu-Kadanoff duality [I21 one takes E = -r = 1. This means that if two 
adjacent cell spins point to the same direction the edge spin in between points up. For 
R this implies that i + j = k + / is the necessary condition for a non-zero R. When 
the number of states is N = 2 and the index arithmetic is therefore (mod 2) the choice 
of sign does not in fact matter and we always get the eight-vertex ansatz. However, 
for N 5 2 the two sign choices for Er are genuinely different. The permutation matrix 
R = 6:$ is always included, but a diagonal R-manix is included only with the above 
choice E = -r = 1. On the other hand, the choice 6 = r = 1 gives a manifestly left-right 
symmetric restriction. 

4. The tetrahedron equation 

We will now derive the tetrahedron equations for three possible labelling schemes using the 
above derivation of Yang-Baxter equations as a guide. 

4.1. The basic state and the basic scattering process 

To begin with we have a two-dimensional ambient space and in it one-dimensional objects, 
straight strings. But this is not yet the basic state, for it we need two intersecting strings as 
shown in figure 5. The two strings divide the space into four quadrants and they also cut 
each other in two parts, furthermore, we have a particle at the intersection of the strings. 
Thus to fully label the basic state we need four vacuum labels, four string labels and one 
particle label (along with two dynamical characterizations, the string velocity vectors, which 
also define the motion of the particle). 

The idea that the position of a particle is defined by intersecting strings has a precedent 
in soliton physics. The (2 + 1)-dimensional DaveyStewartson equation has localized 
solitons (called ‘dromions’) that are exactly of this type. It turns out that in this (and 
some other) soliton systems one can separate a physical and a ‘ghost’-fields. The ghosts 
are normal plane-wave solitons but they do not show up in  the physical field. However, at 
the intersections of the plane-wave ghosts the physical field is excited, creating an object 
that is localized in two dimensions [13]. 

For the basic scattering process we have to add one more straight string. The three 
strings form a triangle and the initial and final states of the basic scattering process 
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Figure 6. The initial and final states of the basic scattering process of three strings. 

Figure 7. A perspective view of Ihe scattering of three strings. the vertical axis is for time 

look as in figure 6. First the triangle formed by the three strings decreases to a point, 
turns over and then starts to expand again. A perspective view of the process with time 
as the vertical axis is given in figure 7. During scattering the string velocities do not 
change (elasticity) but the labellings of the inverting triangle can change. that is, the 
vacuum at the centre, the three string segments at the sides, and the three particles at 
the corners. 

4.2. Thc three labelling schemes 

The scattering process of figures 6 and 7 is characterized by a scattering amplitude which 
depends on the various labels given in figure 6. Some of the labels may of course be 
ignored. We will mainly discuss the following three labelling schemes: 

(i) If we are only interested in the state of the vacua the scattering ampl'itude is given 

44efg lbcd lh )  (13) 

where the rule is to write first the vacuum in the centre of the initial state (cf figure 6), 
then the vacua having a common edge with the centre of the initial state (clockwise, 
starting from the left), the vacua having a common edge with the centre of the final 

by VI 
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Figure 8. The two scattering scenarios with four strings. The frame of reference has been 
chosen so that the intersection of strings I and 4 is stationary. The intersection point of strings 
2 and 3 can now pass the 1-4 intersection point on the left or an the right and both scenarios 
should give the same result. 

Figure 9. A three-dimensional view of the two possible scattering scenarios, 

state (clockwise, starting from right) and finally the new vacuum at the centre of the final 
state. (Some authors use counterclockwise labelling [4].) For vacua we use lower case 
letters from the beginning of the alphabet. If we look at the system in three dimensions 
with time as the thud axis then vacuum labelling can also be called volume or cell 
labelling. 

(ii) In slring (or face) labelling we write the process as 

where the rule is to write on each row the labels of one string, starting from the bottom of 
the Ieftmost string in the initial state and then clockwise (see figure 6). The last entry in 
each section is for the string segment in the middle of the new  angle in the final state. 
For slxings we use Greek letters. (The convention in [ I ]  is slightly different.) 

(iii) In particle (or edge) labelling we write the scattering amplitude as 121 

Here the lower indices give the corners of the triangle in the initial state, (clockwise, starting 
from lower left-hand corner) and the upper indices refer to the triangle in the final state. 
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Figure 10. The sequence of five different time-slices of four string scattering wrresponding to 
he LHS of figure 9.  The triangle that is about to turn over is marked with a cross. the result 
with a circle. All labels u,ithin and bordering the triangle change. 

For particles we use lower case letters from the middle of the alphabet. 
In addition to the quantum numbers that change during interaction the scattering 

amplitude could also depend on non-changing 'spectator' quantum numbers attached to 
a particle or globally to a string. 

4.3. The factorization condition 

In analogue to section 2.2 we get a factorization condition when we add one more element 
into the picture. With the fourth straight string the initial state can always be rotated into 
the one given in figure 8; the four shings make a arrowhead-like figure that points upwards. 
We can now go to a frame where the top of the arrow stays fixed and observe the motion of 
the intersection of the other two strings. Depending on the relative initial positions of the 
stings this intersection can pass the stationary intersection on the left or on the right. Triple 
intersections take place whenever either of these intersections crosses a third string. But on 
the right- and left-hand sides of figure 8 the order of the triple intersections is different; the 
tetrahedron equation is obtained when we require that both scenarios should give the same 
result. 
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Figure 11. The sequence of time-slices corresponding to the RHS of figure 9. 

A three-dimensional spacetime description of this is given in figure 9. At the centre 
is the tetrahedron of the tetrahedron equation, its corners have been marked by black 
dots. The tetrahedron has different orientation on the different sides of the equation, 
in the same way that the triangle is turned over in figure 4. In the following we 
are interested in the labelling associated with the scattering process. For that purpose 
it is easier to look at a sequence of two-dimensional sections rather than the three- 
dimensional tetrahedron, the five essentially different sections are given in figures 10 and 
11. 

Let us first consider the vacuum or cell labelling. Then following the diagrams of 
figures 10 and 11 using the convention of (13) we get the d4 equations (equation (2.2) of 
171) 

w (a4 I C Z C I  c3 Ibl b3bz 1s) w (CI I bz& I tc4gc6 lb4) w(bt I gem I ~zb3b4 Icd 
8 

xw(gIb~b4b3IC~C~C6lai) 

= w ( h  I C I  w 3  lazw3 18) 
8 

Xw(Cl lha3a41gcZc6lal )"J(a4lcZgc3 lW3al Ic5)w(g~ala3a2~c4cSC6~~4) . (1 6)  
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If instead we use string labelling (14) we get dZ4 equations 

This is the original tetrahedron equation, (3.9) of [ 11, up to some label rearrangements. 
Finally in the particle or edge labelling we get dl* equations [2] 

where we have used the Einstein summation convention over the repeated k indices. We 
may again consider Rs as matrices, which now operate non-trivially on three vector spaces, 
and use, as before, the shorthand notation of writing only the vector spaces 

R I z R I ~ ~ R M R w  = R ~ % R z ~ ~ R I ~ s R I ~ ~ .  (19) 
Since each particle is at the intersections of two strings, we could as well use the a pair of 
string labels for each particle according to the following translation table: 

1=(12)  2=(13) 3=(23)  4=(14) 5=(24)  6=(34)  (20) 
which yields 

At this point we would like to discuss briefly how the Frenkel-Moore equation [3] is 
related to the tetrahedron labellings. This set of d8 equations is given by 

where summation is over the repeated k and I indices, or in shorthand notation 

F m  F i z 4  434Fn4 = F m  F134 F i z P z 3  . (23) 
Note that when the rows in the string labelling (17) are turned into columns the index 
numbering in (17) and (22) is identical. In fact, it turns out that the Frenkel-Moore equation 
is obtained with string labelling, but the labelling is nun-local: Let us assign to each string 
a global index, which changes whenever the string takes part in a triple collision. When one 
now goes through the sequence of scatterings in figures IO and I 1  with this convention one 
obtains exactly (22). Such a global scheme would not work for the Yang-Baxter equation, 
or for cell or particle labelling for tetrahedron equation, but for still higher-dimensional 
simplex equations there can be several different non-local labelling schemes. This is based 
on the observation that equations (21) and (23) are just two ways of distributing the indices 
1234; this idea has been generalized to arbitrary dimension by Carter and Saito [5]. 

4.4. The spectral parameters 

Above we have discussed the labels describing the quantum states of the particles, strings, 
or vacua. In addition there are variables related to the dynamics of the strings (often called 
spectral parameters) which we briefly discuss here. 

The motion of a uniform shing on a plane is given by a 2-vector perpendicular to 
the string [I]. (In principle, we should also give the initial positions of all strings at 
some initial time, but the basic principle in the derivation of Yang-Baxter and tetrahedron 
equations is that the initial position does not matter, and therefore it cannot appear as 
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a variable in the scattering amplitude.) In the three-dimensional picture, where moving 
strings are represented by planes (see figure 9) we can give the orientation of the planes 
by unit  vectors ui perpendicular to the plane. Thus the scattering amplitude of the basic 
process depends on three unit  vectors and in the tetrahedron equation we have altogether 
four unit vectors. 

The unit vectors can be represented by points on the unit sphere. Normally we are only 
interested in the relative positions of these points and then for the four points we need five 
real numbers. (A simple coordinate dependent parametrization is obtained by choosing one 
point as the north pole, putting the second on the 0 meridian (one coordinate), and Ziving the 
latitude and longitude for the remaining two.) A coordinate independent characterization of 
the relative positions can be given by the angles 6 between the unit vectors, for this purpose 
we write 

(24) c . .  '] .- .- U ,  . uj = cos(n -e;/, . 
There are six such angles but since only five of them can be independent, as shown above, 
there must be constraints between them. In fact from spherical trigonometry it follows 
that [ 11 

It should be noted that this result extends to other dimensions [4] (in the Yang-Baxter 
case we have a 3 x 3 matrix, but then the condition between the three angles U ,  w ,  U can 
be linearized resulting with w = U + U, as was used in (2)). If we now write the angle 
dependence explicitly (19) becomes (cf equation (21)) 

Rm(812, $13. &3)R145(@12.614. &4)Rz4a(en, $14, &)R356(&j, Q w  $34) 

= R3S6(8& ew, edRw6(e13 ,  eI4, e34)~145(e12, 8147 e24)~Iu(e12, eI3, 0,). 
(26) 

Solutions of the tetrahedron equations with other dynamical parametrizations may also 
be interesting, but then one needs to discuss the meaning of these parameters. In any case 
the dependence on dynamical parameters is quite independent of the labelling schemes and 
therefore here we will not discuss this topic further. 

5. Dualities between the labelling schemes 

We will now construct the tetrahedron analogues of the Wu-Kadanoff duality between the 
three labelling schemes. We follow closely the derivation used in section 3. 

The general setting is that the Boltzmann weights map as w : I,?' + C while (16) itself 
is defined on IF15, the string scattering amplitudes as S : Z,712 + C and (17) is defined 
on IFz6, and finally for the particle scattering amplitudes we have R : Z f ' 6  + C and (18) 
is defined on If']*. We must now construct maps F that connect the pairs as follows: 
w = R o Fup. w = S o Fvs, and S = R o Fsp. 

5.1. Dualiry between vacuum and particle labellings 

The first step is to express the scattering amplitude w of (13) in terms of the R of (15). 
According to the principles of hierarchy, locality and linearity each index of R is given by 
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a linear combination of the vacua (cells) around the corresponding particle (edge). From 
figure 6 we get, after checking also that labels match (step (i) in subsection 3.2) 

(27) 
adf#lr+ib+d f,~:h+B~+yp+s~.=d+B~+yL.+6h 

w(alef8 I b  d l h )  = R , , t g c t y p t 6 ~ . u d t g r t y a + 6 / , ~ ~ t ~ ~ t ~ ~ t ~ 6  

from which Fyp can be read off. The constants a, P, y. 6 are the parameters of the map 
Fvp and we will later find restrictions on them. 

As for step (ii), constraints on R ,  we observe that in (18) there are six summation 
indices, and in (16) only one, thus we must get at least five conditions through the four 
Rs,  that is, one condition is then not enough but we need two for each R .  The constraints 
can only be consequences of the particular form of R in (27). Depending on the choice 
of parameters a, P, y ,  6 one can obtain linear relations among the labels of R and we can 
then define R = 0 when these relations do not hold 

R!mn = 0 unless Ali + AZj + A3k + B l l +  Bzm + B3n = 0 Y k  

Using equation (27) and requiring that these linear relations be hue for all values of 
a, . . . ,  h yields eight equations. These can be easily solved for A i ,  Bj under certain 
restrictions on a, B ,  y ,  6 .  There are two non-trivial results, with VPA: a y  = BS and 
VPB: a = y = 0, B + 8 = 0, which we now discuss separately. 

5.1.1. Case VPA with all parameters non-zero. In the first case we find that if a y  = 
we can impose two relationships between the labels of R and thus we can define 

imn - Riik - 0 
To get the corresponding condition for w we may assume that the 1 and n labels of R in 
(28) are determined from the others, and then we get 

w(alefglbcdlh) = G ~ ( a e + B c +  y g + 6 a , a d + B e +  y a + 6 f ,  

unless a l + @ i = f i m + a j  and y m + B j = B n + y k .  (28) 

af + Ba + yg + S h a h  + Bc + yg + 6b) 

RCY = G A ( i ,  j ,  k ,  m y .  

(2% 

(30) 
To prove that a duality exists between (16) and (IS) we substitute (27) into (16) and 

convert it to have particle labels of (IS). (We also use ay = 06 to eliminate 6 . )  In the 
process one finds restrictions on the labels, five of the eight conditions relate k i ,  on the LHS 
as 
akl + Bjl = aj2 + Bkz 
~ k 4  + Bj4 = Yjs + Bk5 
and on the RHS as 
all + Bk1 = akz + ,912 

akl + Bj l  = ah + 814 
and the remaining three restrict the unsummed indices: 

01 

(31) 
yk2 + B i z  = yj3 + Bk3 

~ 1 4  + Bk4 = yj6 + Bks 
a11 + Bkl = aj4 +Oh 

(32) 
ylz + Bkz = yk3 + 813 yf4 + Bk4 = yks + Bls  
yk4 + Bj4 = Yk6 + B k  

a2(j4 - It)  + a ~ ( f z  - j z )  +&I - 14) = o 
o l ~ ( j 4  - 13)  + ~ r ( j 3  - ~ 4 )  +VUZ - j5) + p2(r5 - j z )  = 0 

B 2 ( j ~ - - 6 ) + B y ( ~ s - j 5 ) t y 2 ( j 6 - - 4 )  = o .  
This means that the range of F:p is ten-dimensional and thus its kernel should be five- 
dimensional. Indeed one finds during the label conversion that i t  can be generated by 
{a l ,c l , cz ,c3 ,c6) .  

(33) 
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After this it is possible to write the common equation to which (16) and (18) reduce 
under duality, in terms of C A  defined in (29) or (30) it  reads 

C k C d j l ,  j z ,  j3, k)CA(jz + B(k - j i ) ,  j 4 ,  j 5 ,  1; + S ~ W A K  1; + B k ,  j 6 , h )  

x W A ( j z + Y ( k -  j d ,  j 4 + ~ ( 1 ; - j S ) + B p k . l ; + ~ ( 1 4 -  j d + B k , 1 ; + 7 1 4 )  

= xkWA(j3 .  j5,  j6, k)CA(jZ. j 4 ,  j5 + p(k - id, 1; + W c A ( j t .  I;  + pk, k ,  14) 
xwA(1; + p k  + S(14 - j l ) ,  34 + SU; - j z )  + W ,  j5 + B(k - j3 ) ,  I ;  + BW 

(34) 
(where we have used the further definitions j? = a), y = pp,  1; = 12 - &, l; = l5 + 7 l 4 ,  

and eliminated 11, 13. 16 using (33)). 
In this equation we have resolved all the conditions from vacuum-particle duality. The 

function CA depends on only four labels, and in the equation there are altogether nine free 
labels. Thus we have d9 equations for d4 functions. It has the original symmetry that the 
LHS and RHS are exchanged if we exchange the first and third variables of C A  and the labels 
as 1 ct 6, 2 U 5, and change the parameters B c+ p. 

5.1.2. Case VPA with some zero parameters. Above we assumed that all the parameters 
a, p, y,  6 were non-zero. The form of (28) is such that p must be non-zero (if not we must 
also have a or y vanishing and then there is only one constraint). We could, however, 
assume that a = 6 = 0, which yields 

R!mn i l k  = 0 unless i = m y m  + j?j = j3n + y k  (35) 
or y = 6 = 0, which gives 

R!m" i l k  = 0 unless j = n a1 + p i  = j3m + a j  . (36) 
For both of these 8 = 0, but if S # 0 we can eliminate j3 from (28) and write the conditions 
as 

61 + yi = y m  + S j  Sm + a j  =an + 6 k .  

Now we get two further possibilities, for j? = a = 0 

R!m" wk = 0 unless m = k 61 + y i  = y m  + Sj (37) 
and for j3 = y = O  

R!m"=O i l k  unless l = j  S m + a j = a n + S k .  (38) 
These four possibilities are really various reflections of each other, so it is sufficient to 

discuss only one of them here. Let us assume that y = 8 = 0. In deriving (31H33) it was 
assumed only that j? and a were non-zero so we can use these results, the conshaint (36) 
is also such that we can solve l and n in terms of the others. Thus the final result is just 
(34) with = 0, i.e. 

CkCo(0(il, j z ,  13 ,  k)Cdjz + B(k - j l ) ,  j 4 ,  j5,G + B k ) ~ d k , 1 ;  + j k ,  j 6 ,  ~ 4 )  

x C o h  j4,1; + B k .  1;) 

= CpOh i s ,  j 6 , ! + j j d h 9 j 4 ,  j 5 , Q C o ( j 1 , 1 ; , k k )  
X C O U ;  + B(14 - j l ) ,  j4 + B(l; - j d ,  j5 + B(k - j d ,  l; + SW . (39) 

The result simplifies considerably, and the most interesting feature here is that on the RHS 
the second term does not contain the summation index. 

The other three possibilities give similar results. 
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5.1.3. Case VPe.  
(for simplicity we assume @ = I .  6 = -I), and thus 

For this solution the parameters are restricted by 01 = y = 0 and ,6 = -6 

(40) 

R!?" 4 = O  unless m = i + k  j = l + n .  (41) 

h- f,c-b.e-h 
Wlefglb cdlh) = Rc-n.e-f.u-h 

and we can impose the constraints 

In this case we solve for in and j in terms of the others and define lslg by 

w(u1efgjbcdlh) = bs(c - a , a  - b. h - f, e - h )  or R!'" - - w d i ,  k .  I , n ) .  

(42) 
As in the previous case we can next work out the constraints this implies on the indices 

k6 = j5 + kl - 12 

(43) 

of the tetrahedron equation, on the LHS we get 

k2 = j l  + j3 

and on the RHS 

ks = j3 + j6 

while for the unsummed indices we get 

14 = j l  + j s  + j.5 1s + 12 = j z  + j s  

CtcB(jl. j3 ,  k ,  j z  - k)%B(k, j s .  11, j i  + 1.5) 

k3 + kl = j z  k4  = j s  + kl k5 = j4 - 11 

k6 + k3 = j s  k2 = 11 + 13 kq + k3 = j2 + j s  kl + k3 = 12 

(44) 

(45) j4 = 11 + I3 + 16 . 
The common equation in terms of CJB reads (f, = 1; + j s ,  j4 = j i  + 11 +/e) 

xtirB(jl + j3 ,  j6 ,  j s  +-l{, k -l;)lslB(jz - k ,  k - l;, j i ,  1.5) 

x1ZlB(jt l j3+ j g . l : + ~ k ,  j 2 - l ~ ) G B ( l g + k ,  j s - k l ] ,  j i ) .  
= C K C t ~ ( j 3 ,  j6,  i s  - k , k h ( j z ,  k .  j i  + 11.16) 

(46) 
This has again the symme'uy exchange s y m m e o  mentioned before, now the LHS and RHS 
are exchanged if we exchange the first and the second, and third and fourth variables of ~ Z B  
and the labels as I * 6, 2 U 5, except that 1; U -16. 

5.2. Vacuum-string duality 

To get a duality between vacuum and string labellings we assume (hierarchy!) that each 
string label is determined by the two neighbouring vaCuum labels, from figure 6 and label 
matching we get (cf [7], equation (2.4)) 

which defines 4%. Since there are only two free parameters we assume that both of them 
are non-zero. Using the same method as before we find that (47) implies five relations 
between the indices of S: 
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This reduces the number of relevant labels from 12 to 7. The conditions seem to be much 
more than we need to restrict the summation in (17) to that of (16), but when one observes 
the way the summation indices are distributed in (17) the conditions appear more reasonable. 

We can use (48) to determine Bz? y ~ ,  y 3 ,  V I  and y and then we find that w depends 
only on seven variables, we can take, for example, 

w(a1efglbcdlh) = W ( E C  + sg. ce + T C ,  Ed + r e ,  Ee + r a ,  Ef + ?a, c f + sb, Ed + rh )  

(49) 

(50) 

When one now substitutes (47) into (16) and converts the vacuum labels to string labels 
it turns out that in the resulting expression the labels aj, 012, ~ ~ 3 , 0 1 4 ,  81, 8 3 ,  84, yz, 112, p 3 ,  U Z ,  

y .  u3 and one of the ps can be taken free, all the others are then determined by the following 
equations: 

or 
alp, ** 

S w * n m  = w ( C Y t , a Z , ~ 3 . $ I ?  8 3 .  YZ. 4. 
= d l  ** 

- a 3 €  + P l t  - 8 3 5  + c y ]  = 0 0115 - 0126 + 816 - 825 = 0 
-pzr + 8 3 ~  - + y 3 ~  = 0 - epl + t u 2  + p2r - VI T = 0 
c q t f 8 4 r - E p t  - y l r  = O  p4c - cpz - y2T + y 4 r  = 0 
-evI + E V ~ + L ( ~ T - U I ~  = O  c y 4 - ~ p 3 - y 3 r + p 4 r = 0  

-evz i . 6 9  + yr - q r  = 0 - alr t E U ~  - EU,  + p4r = 0 
-a35 + u4c - E U ~  + u 4 r  = 0 

for the free indices, while the ps are related on the RHS as 

(51) 

and on the LHS by 

--6yI + ~ p 2  + y2r - P I S  = 0 
aZ5 - a 3 6  + E P Z  - p 3 r  = 0 
- f f 4 c  + EYZ + P I T  - p45 = 0 

(53) 

These conditions mean that the dt4  vacuum equations and dU string equations collapse to 
'only' d t 3  equations. Since the range is 14-dimensional the kernel is one-dimensional, it 
can be generated by cg. 

Finally we can write down the common equation in terms of the intermediate function 
W of (49) or (50) as follows (7 = r/6): 

z k W ( a t ,  81 +?(at -$Z),%, $ I , 8 3 .  y2, k )  
x W ( ( k  - ~ 3 ) / 7  4- 81 - 8 3  + Y Z ,  k ,  Y + ? ( a 3  - ~ 3 )  + ? ' ( ~ 4  -81) 
+ f 3 ( p Z  - at). a3 + 7cp3 - A ) ,  p4. p4 + U] - u3 + i ( v 4  - p 3 )  
+ f z ( B z - a t ) l ~ z ) W ( ~ t ,  ( k - E 3 ) / * + 8 1  +?(CY, -82 ) .  

k - 013 + ~3 + ?(PI - ~ 4 )  + ?z(u~ - 821, (k - ~ 3 ) / f  + PI - 8 3  + TZ, 

(VI - v 3 ) / ?  - 8 3  + y2 + U4 + t ( B 2  - at). 113, v3) 

Xw(81 +?(at - 82) ,CY3+ VZ f ? ( a 3  - m) + ?'(U4 -81) + i3(8z -ai) I ,  k 

k - ~ l 3  t ~3 t ?(PI - u4) t f2(@1 - 82). ~ 3 ,  ~ 3 )  
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5.3. String-particle duality 

We proceed as before: first, by hierarchy, locality, linearity we find that S and R are related 
by 

where the 24 free constants have been reduced to 4 by label matching. This defines 
Fsp : 1," + I,". 

Next we must find the label restriction that (55) allows; the results can be grouped into 
two cases, which bear interesting relation with the two cases of vacuum-particle duality. 

5.3.1. Case SPA. The first solution is obtained if q = C = 0, then we can impose the 
condition 

R!? = O  unless ( 1  + wi = wm + f j  (56) 
another solution follows if we take instead w = 6 = 0, and then we get 

R!mn LJk = 0 unless qm + Cj = Cn + v k  . (57) 
One immediately recognizes these as the two parts of the case VPA in (28): in the first case 
one identifies 6 = a, w = 6 and in the second case < = 8 ,  v = y .  Thus the string-particle 
duality follows (with proper parameter choices) from vacuum-particle duality, because for 
the first one we need to impose only 'half of the conditions of the second one. 

One can now work out the conditions of either half as has been done before, but we 
will not do so here, because their combination as given in VPA is in practice probably the 
only important one. 

5.3.2. Case SPB. 
the restriction 

The other case is obtained if we have { = -6, q = -0, then we have 

R'mn ti k = 0 unless w(m - i - k )  = - [ ( j  - 1 - n)  , (58) 
This is a combination of the two conditions of case VPB (41). thus again the existence 
of B-type vacuum-particle duality implies the existence of a corresponding string particle 
duality. The detailed computations proceed as follows. 

If we use (58) to determine j in terms of the other labels, we find the corresponding 
condition for S as 

alPlYl"l - 
S ;;$E; = S(t81 - tu2 + wa i  - wBz, tyz - t83 + w8z - wn. tyt - 5 %  + WVI - wyz, 

- [ U 3  + 0 0 1 1  -on.'$VZ f W ( Y Z - W V 3 )  (59) 



Labelling schemes for tetrahedron equations 5745 

or 

R!:: = s(i, k ,  1 ,  m, n )  , (60) 
Next we substitute (55) into (17) and convert to particle labelling. In the process we 

find that on the LHS the summation indices are restricted by 

and on the RHS by 

and on the free labels on both sides we get one condition 

F2( j4  - 11 - 13 - 16) + ~ - j 2  - i s  + 12 + 15) + 0 2 ( j i  + j 3  + j 6  - ~ 4 )  = 0. 
This means that the range of F:p is 14-dimensional, and hence the kernel 10-dimensional. 
Indeed we find that the kernel is generated by ( ~ 4 ,  a, 8 4 ,  y4, p4,  u3, u4, p2, p 3 ,  p4). 

Finally we can write the common equation in terms of s using (63) to eliminate j4: 

(63) 

This again has the reflections symmeby of the original equation 

6. Simultaneous dualities between all pairs 

Above we have analysed the dualities between pairs of labelling schemes. In this section 
we will discuss the possibility of a having simultaneously dualities between two or even 
three pairs of labellings. It is natural to assume that such pairs of dualities would imply 
relations between the parameters used to define the maps F ,  and we will try to satisfy any 
further conditions primarily by imposing relation on these parameters. 

Let us first consider simultaneous existence of vacuum-particle and vacuum-string 
duality. For both dualities the conditions for their existence can be written as a condition 
on how the Boltzmann weights actually depend on the vacuum labels, (29) or (42) versus 
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(49). From these we can see that it will be possible to satisfy the requirements for vacuum- 
string duality as a consequence of vacuum-particle duality, if the right-hand side of (29) (or 
equation (42)) can be expressed in terms of the combinations EC + rg etc on the right-hand 
side of (49). For case VP, (for which a y  = p a )  it tums out that this can indeed be done, 
provided that 

(at - /SS)(@T - ys)  = 0 .  (65) 
This is a compatibility condition on the parameters used in the definition of the dualities and 
as said before we will first implement them. If equation (65) holds and we have vacuum- 
particle duality, we can then impose the restriction W = GA and get at the same time 
vacuum-string duality. For example, if we use the first factor of (65) we get 
W ( X l , X Z , X 3 , X I r X S i X 6 . X 7 )  = c A ( ( p r X 2 + d y ( X 4 - X Z )  + Y r X l ) / r 2 . ( B X 3 +  Y X 5 ) / r ,  

( ~ ~ X ~ + E Y ( X ~ - - Z - - ~ + X ~ ~ ) + Y T X I ) / T ~ ,  

( p s ( x 7  - 23) + prx2 + E Y ( X ~  - x2 - x5 + X 6 )  + v r x 1 ) / T 2 )  (66) 
and this also implies that (54) becomes (34) (after a change of labels). For case vPB it 
turns out that no extra conditions on parameters are needed: GB of (42) is automatically a 
function of the variables in W and we can impose 

W(.rl, X21 X 3 ,  X4. X51 X6r X7) = wB((fZ-- X4)p/5, ( X 5  - X 6 ) @ / 5 3  

( s ( ~ 7  - ~ 3 )  + 0 4  - X ~ ) ) P / ( E T ) ,  (9 - x 7 ) B / 5 )  (67) 
and as a consequence (54) reduces to (46). Thus in either case a vacuum-string duality can 
be obtained, once the vacuum-particle duality has been established, 

For vacuum-particle and string-particle dualities the condition can be best written on 
R, (28) or (41) versus (56), (57) or (58). But as we have already observed in section 5.3, 
the first duality implies the second one when the parameters are chosen properly. 

Next let us consider simultaneous vacuum-string and string-particle dualities. Here we 
are interested in the composition F:p = Fsp o F,,, which defines a map from vacuum to 
particle labels. It can always be made and it is then interesting to see how it is related to 
the already discussed dualities of VPA and VPB. In the first case of SP,,~ we put q = < = 0 
and then it turns out that the resulting F& is the same as that of VPA if we identify 

q = < = o :  a = € <  p = € W  y = o s  s = r 5 .  (68) 
In particular, we recover ay = BS, which is the defining relation of the map VPA. For the 
other case  SPA^ we have to put w ==e = O  and then VPA again follows when we identify 

w = t = O : a = r g  p = r t  y = q r  & = C O .  (69) 
Recall that each of the two choices of SPA yielded only one of the two condition of VP,, 
the extra restriction from simultaneous vacuum-string duality has now somehow created the 
missing one. Recall also that the simultaneous existence of vacuum-particle and vacuum- 
string dualities is possible for case VPA if condition (65) holds, it  now turns out that the 
first factor of (65) vanishes automatically for (69), the second for (68). Finally, when the 
string-particle duality is given by SPB we first put q = -U and < = -5 and then the 
composed map is that of VPB (where we have a = y = 0), if 
q + W = < f e = (70) 
Note, in particular, that in this case we get a non-vanishing condition on the parameters, 
we must assume that EW - T{ # 0. 

In summary. if the conditions of A- or B-type vacuum-particle duality are satisfied 
one can always find compatible parameter values for the vacuum-string and string-particle 
dualities so all three can coexist. 

= y =o: @ = ( E W -  KC) 8 = - ( E @  - 76) .  
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7. Examples 

The original solution of Zamolodchikov [ I ]  was for a two-state model given in the string 
labelling. It passes conditions for A-type duality, and indeed, the detailed studies of Baxter 
171 were done in the vacuum labelling, and in [4] this solution was written in the particle 
labelling. This solution has full spectral parameter dependence, with the determinantal 
relation (U) and therefore checking the solution is quite tedious, see [7] for details. 

In [9]  Korepanov gave a two state solution that is very close to passing the requirements 
(41) of B-type duality: instead of (41) R is non-zero when m = i + k + (i + I)(k + n) and 
j = 1 + n + ( i  + I)(k + n) .  We present here a slight modification of Korepanov’s ansatz 
which does pass the duality conditions; in this new solution the non-zero components of 
R ( i j ) ( ; k ) ( j k )  are as follows: 

where 6 = j: and the s;js just have to satisfy 

s,:s,zks;k =.E. -si + si’x 
which is solved by Korepanov’s parametrization 

The ‘spectral parameter’ @i is attached to string i and could, for example, be related to the 
string velocity, rather than to the spherical angles as was the case with Zamolodchikov’s 
solution. 

S. Diseussion 

In the first part of this paper we have derived, from the string scattering point of view, three 
kinds of tetrahedron equations corresponding vacuum (cell) labelling (16), string (face) 
labelling (17) and particle (edge) labelling (18). 

In the second part we have studied the condition under which analogues of Wu-Kadanoff 
duality can be established between these labelling schemes. The final result is that there 
are two essentially different ways this can be done, and then with proper choice of the map 
parameters it is in fact possible to have a simultaneous duality between each of the three 
pairs of labellings. In terms of R the conditions and resulting equation can be obtained 
already from vacuum-particle duality and for the two alternatives they are given in (28) 
and (41). The other dualities then follow if we choose the remaining parameters properly, 
i.e. according to (69)<70). This is a very satisfactory result: the labelling schemes and 
dualities form a coherent structure where everything fits together well. 
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